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ABSTRACT
We demonstrate GridInSight, a suite of techniques that leverage
low-cost, non-intrusive, and commodity smartphone and machine
vision cameras to measure electricity grids. Specifically, we develop
techniques to measure electricity grid frequency, phase (indoors),
and phase (outdoors) across a mix of cameras with errors of 1-2%,
2-5%, and 3-10%, respectively. Further, we develop a novel technique
and show an error of 8-15% for measuring voltage on a lightbulb
that our system had not seen previously. The ability to cheaply and
pervasively measure power quality with non-intrusive, off-the-shelf
hardware can enable a wide range of applications for monitoring
electricity grids, particularly in emerging economies.
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1 INTRODUCTION
A network of millions of interconnected sources and consumers
delivering its goods at light speed with few if any warehouses
for inventory – the electricity grid remains as one of humanity’s
foremost engineering marvels. The most visible evidence of the
ubiquity of the grid are the billions of artificial lights that surround
our indoor and outdoor lives. In addition to illumination, lights
provide more than meets the eye – the intricate patterns of light
flicker caused by the cycling of alternating current electricity can
expose insights into the dynamics of electricity grid operation.
Increasingly smaller, cheaper, more capable, and more pervasive
imaging technology – found on commodity smartphones and vision
cameras – can help to capture these subtle variations in light.

At the same time, many grids and utilities are unprepared for
the oncoming tsunami of change wrought by the democratization
of electricity infrastructure, largely driven by inexorable reductions
in the cost of renewables and storage. Electricity grids, particularly
those in emerging regions, typically suffer from a dearth of sensing;
without enough information about the status of the grid and the
quality of the electricity at endpoints, utilities struggle to provision
electricity reliably and customers struggle to thrive. Traditional
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methods of grid observation – smart meters or in-network sensors
like phasor measurement units and the analytics systems needed
to harness their data – are often out of reach, too expensive and
not economical at scale.

In this paper, we explore the potential to measure electricity grid
characteristics using non-intrusive photography. We build on previ-
ous work [3, 25] that uncovered the link between light patterns and
grid conditions. We introduce GridInSight, a suite of techniques that
leverage low-cost, non-intrusive, and commodity imaging devices
to measure electricity grids. Our work develops techniques and
evaluates the capability of cameras to measure power quality and
grid dynamics. Specifically, our novel contributions include:

• A database characterizing the bulb response functions (BRFs)
of 74 lightbulbs on a 60 Hz supply

• A comparison of techniques for empirical measurement of
electricity grid frequency solely from camera images of light-
bulbs

• A first-of-its-kind technique for measuring electricity grid
voltage purely using camera images of lightbulbs

• Comparative evaluation of two smartphone cameras and a
machine vision camera for measurement of grid parameters,
including detailed error measurements

The paper begins with a survey of related work on power quality
monitoring before providing background on the core concepts of
lighting with alternating current supply and the rolling shutter pho-
tographic effect. Sections 4, 5, and 6 introduce our methodology for
measuring grid frequency, phase, and voltage using camera images,
followed by implementation details in Section 7. We then provide
experimental results for each of the measurement parameters in
Section 8 and conclude with discussion and future work.

2 RELATEDWORK
Power quality monitoring is important for utilities to improve the
efficiency of their systems and to reduce financial losses [23]. Us-
ing data recorded by a monitoring system, utilities can plan the
maintenance of distribution grid equipment and take necessary
measures to reduce power quality disturbances [23]. User appli-
ances and equipment are directly affected by the quality of power
being delivered to their homes and offices [13] and so power quality
monitoring systems can also help utilities make their system safer
for end users [23]. Advanced metering infrastructure has been the
conventional choice for voltage quality and frequency monitoring
purposes [2, 13, 14, 18, 19]. Additionally, to address the voltage im-
balance problem caused due to uneven loading of phases of the dis-
tribution network, researchers have demonstrated the use of smart
meter data to detect phases to supplement distribution-level phase
balancing studies [16]. However, smart metering infrastructure can
be expensive [13]. We propose an affordable and non-intrusive

243

https://doi.org/10.1145/3360322.3360855
https://doi.org/10.1145/3360322.3360855


BuildSys ’19, November 13–14, 2019, New York, NY, USA Zeal Shah, Alex Yen, Ajey Pandey, and Jay Taneja

5
0
5 Input Voltage

0 5 10 15 20
Time (milliseconds)

1

2

3

4

Re
co

rd
ed

 In
te

ns
ity

CFL
Halogen
Incandescent
LED1
LED2
LED3

Figure 1: Bulb Response Functions of different bulbs
recorded using a photo-transistor. Distance between bulbs
and transistor was held constant at 40cm. Recording was
triggered at the zero-crossing of input AC voltage wave.

system for monitoring voltage and frequency as well as detecting
phases at distribution level.

Voltage, frequency, and phase of the supply affect the intensity
and flickering pattern of artificial lighting [24]. This allows bulb
characteristics like intensity and flicker pattern to serve as a side
channel about the grid powering the bulb. Sheinin et al. [24] devel-
oped a novel coded exposure imaging system for passively sensing
the bulb’s response to obtain the underlying electric phase infor-
mation but it required tethering to the AC grid which makes it
intrusive. Other researchers have also demonstrated non-intrusive
monitoring of a grid using imaging through cameras and other tech-
niques. Bianco et al. [3] used hypertemporal imaging to observe grid
phases of light sources across the NYC skyline by employing a dig-
ital camera and a special liquid crystal shutter. Breda et al. [4] used
a cell phone microphone and a fan to sense grid voltage. Sheinin
et al. [25] demonstrated that off-the-shelf cameras can be used for
grid sensing by exploiting the rolling shutter mechanism of digital
cameras. The rolling shutter mechanism has been modeled and
analyzed in multiple research papers [10, 15] and has been used for
a variety of sensing purposes, including sensing grid frequency fluc-
tuations in indoor lighting [8, 26], measuring principal frequency
components of vibrations of man-made objects like motors [28],
calculating pose and velocity of rigid objects [1], and developing
a mechanism for communication between cameras and displays
while in the process of capturing photos which used rolling shutter
cameras as receivers [12].

Smartphones are easily available and increasingly affordable,
and most smartphone cameras have rolling shutter sensors. In this
research, we use the concepts presented in previous work [24, 25]
to record bulb responses and detect phases using the rolling shut-
ter mechanism of smartphone cameras. Additionally we propose
methods to passively monitor frequency, phase, and voltage of the
grid. We also compare the measurement accuracy of smartphones
and vision cameras.

3 BACKGROUND
3.1 AC Lighting
Electricity is delivered to the end consumer in three phases. Each
consumer can be tapped on to a single phase or the full 3-phase
connection based on a consumer’s power requirements. In 3-phase

configuration, AC waves in each phase wire are shifted by 120◦
from AC waves in another. If we consider one phase connection
to be at 0◦ then the other two connections of a 3-phase system
will be at 120◦ and 240◦. AC voltage wave is represented as V (t) =
Vmax sin(2π f t −ϕ)where ϕ is the phase of the wave, f is frequency
(50Hz or 60Hz), andVmax is the maximum voltage amplitude (120V
or 230V). Let us assume that we connect one bulb to every phase of
a 3-phase system. In every phase connection, the voltage pulsates
at a frequency f and so the bulb’s output will also pulsate. Bulbs
will flicker at a frequency double the AC supply frequency, i.e. at
2f [24]. For this paper, we define ∆ = 1/2f as duration of a bulb’s
flicker cycle. The phase difference between the bulbs will cause
their flickering patterns to be shifted in time from one another.
Flickering of light bulbs is also governed by their make and internal
circuits [25].

In previous work [24, 25], the bulb’s temporal flickering behavior
as related to input voltage is introduced as a unit-less Bulb Response
Function (BRF). The BRF value at a time t is defined as the ratio
of intensity measured to the temporal average of measured inten-
sity. The BRF can be acquired by recording timely measurements
from a photo-diode placed near a bulb [24]. Using the suggested
methodology, we created a database of BRFs of different bulbs as a
part of this research which is discussed in more detail in Section 7.3.
Every bulb has its own characteristic BRF as shown in Figure 1.
Alternatively, a BRF can be defined as a bulb response wave which
is a function of time and phase of the AC supply, and can be de-
noted as Bβ (t −ϕ ∆

2π ), where β denotes bulb type, t is time, ϕ is the
phase of AC supply [25]. Employing this new definition for a bulb’s
response, one can sense a BRF using imaging. If M light sources
are illuminating an object, the captured intensity of the object can
be mapped to image pixel response as follows

i(r , c, t) =
M∑
s=1

τs (r , c)Bs (t − ϕs
∆

2π
) (1)

where, (r , c) denotes (row, column) pair to index an image pixel.
Sheinin et al. [25] defines τs (r , c) as a response of an image pixel to
actual illumination by a source s and terms it as the light transport
coefficient at the given pixel corresponding to a source s . τs (r , c)
forms a matrix of r rows and c columns for the complete image.
According to Sheinin et al. [25], τs (r , c) contains information asso-
ciated with image radiance which is dependent on factors like lens
aperture, distance of source from camera, exposure duration, and
more.

3.2 Rolling Shutter Camera
In this subsection, we introduce a method developed by Sheinin et
al. [25] for leveraging the rolling shutter effect in digital cameras
to measure electrical grid activity from photographs. A majority of
modern smartphone and DSLR cameras are rolling shutter cameras.
In a rolling shutter camera, every row of the sensor is exposed after
a delay D relative to the preceding row [15, 21, 25]. D depends on
the make of a camera’s sensor. If the topmost row of the sensor
was exposed at time t0, then the r th row will be exposed at time
t0 + rD. Every row will be exposed for time equal to the exposure
time (Texp ) set using the shutter speed setting of the camera. Thus,
a rolling shutter camera provides a temporal sampling rate of 1/D
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Figure 2: Image of a wall illuminated by a bulb captured
using an IDS vision camera at 1.25ms shutter speed. The
dashed vertical line of pixels represents the flicker wave pat-
tern of the bulb (as seen on the right).

Hz. Substituting the value of t in Equation (1), we get

iroll (r , c) =
M∑
s=1

τs (r , c)Bs (t0 + rD − ϕs
∆

2π
) (2)

When a scene illuminated by AC lighting is captured using a
rolling shutter camera, we obtain a vertical spatial pattern with a
period of ∆/D rows, i.e. a spatial frequency of D/∆ as shown in
Figure 2. The flicker wave pattern of a bulb can be obtained by
extracting a column of pixels from the image region dominated
by that specific bulb as shown in Figure 2. Furthermore, when the
exposure time Texp is set to ∆ or an integer multiple of it, the
image becomes invariant to the BRF of sources illuminating the
scene [25]. In other words, the image behaves as if captured under
DC illumination [25].

idc (r , c) =
M∑
s=1

τs (r , c) (3)

For an image region dominated by a single source s ′ [25],

idc (r , c) = τs ′(r , c) +
M∑
s,s ′

τs (r , c) ≈ τs ′(r , c) (4)

Therefore, for an image region dominated by a single source s ′ the
image intensity signal can be given as [25],

iroll (r , c) = idc (r , c)Bs ′(t0 + rD − ϕs ′
∆

2π
) (5)

Equation (5) denotes that we can obtain the BRF of source s ′ by
extracting a column of pixels from the normalized image ( irol l (r,c)idc (r,c)

)
of the region dominated by source s ′. This concept plays a major
role in frequency and phase calculations that will be discussed in
Sections 4 and 5. Thus, for frequency and phase detection experi-
ments, we capture two different kinds of images – a rolling image
and a DC image. The rolling image is an image captured at a shutter
speed of less than 1/2f seconds. The DC image is captured at a
shutter speed equal to or an integer multiple of ∆ (=1/2f ) seconds.

4 FREQUENCY MONITORING
Capturing a bulb’s response can provide us with insights into fre-
quency of the AC supply powering the bulb. We record a bulb’s
response function by capturing a rolling image and a DC image of
a surface being illuminated by that bulb. Dividing the rolling image
with its DC counterpart will remove scene-dependent information
from the resulting image [25]. As discussed in Section , an image
recorded using a rolling shutter sensor possesses a vertical spatial
pattern, and every row of the image will correspond to a timestamp.
We extract and plot a column of pixels and convert the row numbers
to timestamps by multiplying every row number with the inter-row
delay value D as shown in Figure 3(a). In this section, we discuss
three different techniques to calculate frequency of the AC supply
using the extracted signal S(t).

4.1 Finding Peaks
In this approach, we filter the signal S(t) to make it smooth and then
locate its peaks as shown in Figure 3(b). Let us assume the recorded
signal has n peaks (p1,p2,p3, ...,pn ) and each peak corresponds
to a time value (t1, t2, t3, ..., tn ). The period P of the signal can be
calculated as an average of time differences between consecutive
peaks.

P =

∑
(t2 − t1) + (t3 − t2) + ... + (tn − tn−1)

n − 1
seconds (6)

Frequency (f ) of the AC supply can then be calculated using

f =
1
P
× 0.5Hz (7)

4.2 Power Spectral Density
In this approach, we first obtain the strength of different frequency
components of signal S(t) by estimating its power spectrum. We
implement Welch’s method to estimate the power spectral den-
sity (PSD) of the signal which basically splits the time signal into
overlapping blocks, creates a periodogram for each block, and then
takes an average of all the periodograms [11]. As a result, we obtain
a dataset containing a series of power-frequency pairs. The plot of
power spectral density versus frequency for S(t) is shown in Fig-
ure 3(c). Frequency corresponding to the maximum power spectral
density value is the frequency of signal S(t), the frequency of bulb
flicker. Therefore, the AC supply frequency is half the frequency
value of bulb flicker.

4.3 Sine-Wave Fitting
The third technique for frequency monitoring is fitting a sine wave
to the recorded signal S(t) as shown in Figure 3(d). The sine wave
model used for fitting can be represented as follows:

h(t) = a sin(b t + c) (8)

Once the sine model is fit to the data, we obtain the values of
coefficients a,b, and c . Using the coefficient values, the AC supply’s
frequency can be calculated as:

f =
b

2π
×
1
2
Hz (9)
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Figure 3: (a) A bulb’s flicker waveform recorded using a One Plus 6 smartphone camera. (b) Detected peaks of the flicker
waveform after passing it through a moving average filter. (c) Power spectral density of the signal plotted against frequency
components. (d) A sine-wave fitted onto the recorded signal. Estimated frequency of bulb flicker has been shown in (b), (c),
and (d).

5 PHASE DETECTION
Phase detection techniques discussed in this section can be used
indoors and outdoors. Electric phases are a relative concept. This
necessitates the fact that in order to detect phases, at least two
light sources should be involved in the experiment. One of the light
sources is assumed to be connected to the reference outlet. Phases
associated with the remaining light sources are then calculated
relative to the reference source.

5.1 Phase Detection for Indoor Scenes
We capture a rolling image (Iroll ) and a DC image (Idc ) of a wall
illuminated by two light sources (b1 and b2) - bulb1 and bulb2 as
shown in Figure 4. Each light source is connected to a different
phase outlet. The rolling image is then normalized by the DC image
to improve bulb information recovery as suggested in [25]. The
resultant normalized image (Inorm ) can be given as:

Inorm (r , c) =
Iroll (r , c)

Idc (r , c)
(10)

The resultant image contains two spatial vertical flicker wave
patterns - one corresponding to each source as shown in Figure 4.
The visible vertical spatial shift between the two flicker wave pat-
terns denotes the phase difference between the two light sources.
Let us extract a column of pixels from the regions dominated by
each bulb in the resultant image (Inorm ) and denote columns as c1
and c2. The column intensities can be represented as functions of
row number (r ): ib1(r ) and ib2(r ).

ib1(r ) = Inorm (r , c1) (11)

ib2(r ) = Inorm (r , c2) (12)

Here, r ranges from 1 to n, and n is the total number of rows
in the captured image. We then normalize the signals using their
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Figure 4: Image of a wall illuminated by two different CFL
bulbs connected to power outlets 240◦ out of phase captured
using an IDS vision camera. Flicker signals are extracted
from regions dominated by each bulb. The extracted signals
are shifted in space and time due to the phase difference be-
tween the sources.

respective mean intensity values as given in Equations (13, 14, 15).

meanbj =

∑r=n
r=1 Inorm (r , c j )

n
(13)

inormb1 =
ib1(r )

meanb1
(14)

inormb2 =
ib2(r )

meanb2
(15)
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Figure 5: Sine waves fitted to the two extracted flicker wave-
forms. The magnitude of time shift is equal to 2.9ms which
gives a phase difference value of −125◦ i.e., bulb b2 is con-
nected to 235◦ phase relative to b1.

Row numbers can be converted to timestamps by multiply-
ing row number by inter-row delay D. This gives us two time-
dependent flicker wave signals inormb1 (t) and inormb2 (t). The signals
inormb1 (t) and inormb2 (t) are shifted in time. This time shift (tshif t )
value can be used to calculate the phase difference using:

ϕ =
2π (tshif t )

∆
(16)

where, ∆ represents the bulb flicker cycle period which is equal to
1
2f and f is the AC supply frequency. In this section, we discuss
two different techniques to measure the time shift value.

5.1.1 Sine-Wave Fitting.
In the first technique, the result of which is shown in Figure 5, we
fit a sine wave individually to both the time signals. With two sine
waves hb1(t) and hb2(t), the time shift value between the waves
can be calculated by finding the minimum time difference value
between two signals. Since the concept of phases is relative, let
us assume that bulb b1 is connected to phase 0◦. Using hb1(t) as a
reference, we shift hb2(t) horizontally along the time axis until the
difference between both the waves is minimum.

tshif t = ±arдm
t
in |hb1(t) − hb2(t)|

2 (17)

(+/−) sign for time shift value is dictated by the position of shifted
wave relative to the reference wave, i.e. leading or lagging. Once
the time shift value is obtained, it is plugged into Equation (16) to
get the phase difference value. Note that the sine fitting technique
does not depend on the bulb type and its BRF.

5.1.2 BRF-Signal Fitting.
BRF-Signal fitting technique for time shift calculation was proposed
in [25], and is dependent on the assumption that we know the bulb
types and possess their respective BRFs beforehand. The time shift
between the recorded signal and its corresponding BRF is calculated
first. We implement least squares fitting to obtain the time shift for
which the BRF best fits its corresponding recorded signal as shown
in Figure 6.

tb1s = ±arдm
t
in

��inormb1 (t) − BRFb1(t)
��2 (18)

tb2s = ±arдm
t
in

��inormb2 (t) − BRFb2(t)
��2 (19)

The (+/−) sign for the time shift value is dictated by the position
of shifted BRF wave relative to the reference wave, i.e. leading or
lagging. Since we have assumed that the first bulb is connected
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Figure 6: Recorded image signals best-fitted with corre-
sponding BRFs. The overall time shift magnitude is 2.69ms
resulting in a phase difference value of −116◦, i.e. the phase
angle associated with bulb b2 is 244◦ relative to bulb b1.

to the reference outlet, the overall time shift value can then be
calculated as a difference of individual Signal-BRF time shift values.

tshif t = tb1s − tb2s (20)

We substitute the tshif t value in equation (16) to obtain the phase
difference between the two bulbs.

5.2 Phase Detection for Outdoor Scenes
In the majority of outdoor scenes, it is almost impossible to see
and record the flicker wave pattern as shown in Figure 7(a). It is
also important to observe that in the outdoor scenes, the emitters
are usually directly visible. For phase detection in such scenar-
ios, we resort to two different methods as suggested in Sheinin et
al. [25]. First, defocusing the lens blurs the scene and induces a
point spread function around every light source in the frame. The
point spread function of a source contains the flicker wave pattern
of that source as shown in Figure 7(b). Defocusing can be helpful in
scenes where the emitters are widely-spaced such that their point
spread functions do not completely superimpose one another.

In the second technique, we induce the flicker pattern by using a
4-point star filter. The star filter is placed over the lens of the camera
and aligned with the sensor such that a clear point spread function
is observed around the light sources as shown in Figure 7(c). A
vertical streak of light around the sources contains the flicker wave
pattern of the light source.

Once we have the flicker wave pattern induced using either
technique, the phase values can be calculated using the techniques
discussed in Section 5.1.

6 VOLTAGE MONITORING
Image intensity is affected by two factors: (1) the intensity of a bulb
illuminating the object being captured and (2) the distance between
the camera and the object. Intensity of a bulb is dependent on input
AC voltage and bulb type. To better understand the correlation
between voltage, image intensity, and distance - we captured images
of a wall illuminated by a bulb at different source voltage values
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(a) (b) (c)
Figure 7: (a) Outdoor scene with directly visible emitters captured using the IDS vision camera. (b) Flicker patterns induced by
lens defocusing. (c) Flicker patterns induced using a star filter on the lens.
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Figure 8: Heat map demonstrating variation in image inten-
sitywith change in voltage across the source and distance be-
tween the illuminated wall and camera. Uses a Philips CFL
26W bulb and IDS vision camera.

Algorithm 1 Regression Level 1

1: for every v in V do
2: for every d in D do
3: i(d,v) =mean(I (d,v))

4: Curve Fittinд Level 1 : i(D,v) = xv
D2 + yv

5: for every d in D do
6: mult(d,v) = i(d,v)

i(d=1,v)
# Sincemult(d,v1) ≈mult(d,v2) ≈ ... ≈mult(d,vn ), we calcu-
late mean intensity multipliers for every distance value as:

7: for every d in D do
8: mult(d) =

∑
v∈V mult (d,v)

n

9: returnmult(D) = {mult(d1),mult(d2), ...,mult(dm )}

Algorithm 2 Regression Level 2

Require: mult(D) array, and imaдes I (d,v)
1: Flatten each I (d,v) to a column vector IC(d,v)

# Make intensity (IC) independent of distance:
2: for every v in V do
3: for every d in D do
4: IC(d,v) = IC(d,v)

mult (d )

5: Curve Fittinд Level 2 : volt = h × IC + q
6: return prediction_model

and distances, and the experiment was repeated for different bulbs.
Results from one experiment are visualized in Figure 8. It was

observed that voltage (V ) and mean image intensity (I ) are directly
related (V ∝ I ), for a given distance (d). Also, given the voltage,
mean image intensity and distance are inversely related (I ∝ 1/d).
These two relations were then used to build a per-bulb two-level
regression model for voltage monitoring.

Let us assume that the distance between the light source and
wall is negligible. In this case, the wall itself behaves as a light
emitting source. A camera is placed atm different distance values
(D = {d1,d2, ....,dm }) from the wall. For every distance value, n
images are captured such that each image corresponds to one of
the n voltage levels (V = {v1,v2, ...,vn }). Let us represent every
image by the corresponding distance-voltage value pair as I (d,v).
The total number of images is equal tomn.

For the first level of regression, every image is reduced down
to a single value equal to mean image intensity i(d,v). At this
level, the model tries to learn the relationship between mean image
intensity and distance for every voltage value. Since the wall is
assumed to be behaving as a light source, the equation used for
the first level of regression is based on the inverse-square law of
light. The inverse-square law of light states that the intensity of
illumination is inversely proportional to the square of distance
from the source. For every voltage value v , the model tries to learn
the coefficient xv and intercept yv as shown in Algorithm 1. Once
the transfer functions relating intensity and distance have been
obtained, the algorithm calculates the value of intensity multipliers
corresponding to every distance value and returns an array of
multipliers. Multipliers eliminate the effect of distance on intensity.

Once we have the multiplier array, we move on to the second
regression level. Every image is flattened into a column vector such
that cell k of the column represents mean intensity across row
k of the image. Let us represent each column vector as IC(d,v).
All the column vectors are then stacked in a column called "IC"
and we populate "dist" and "volt" columns with d and v values
corresponding to every data point. Values of the IC column are
normalized by their corresponding multipliers to make intensity
readings independent of distance. The second regression model
learns the transfer function connecting updated intensity values
and voltage as shown in Algorithm 2, where h is a coefficient and
q is the intercept. As an output of regression level 2, we obtain
the final voltage prediction model. This is akin to removing the
distance dimension from Figure 8.

In order to predict voltage using the model, image is passed on to
the model along with the distance at which the image was captured.
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Table 1: Lighting Database Summary

Bulb Type Count Wattage Range Price Range
(W) ($/Unit)

CFL 16 9-32 3.49-5.89
Incandescent 10 60-200 1.29-6.99
Halogen 11 39-150 1.6-11.49
LED 36 4-23 2.89-17.99
Xenon 1 39 7.99

The image is flattened into a column vector and is operated upon
to eliminate the effect of distance using the correct multiplier. The
trained model then predicts the voltage vector associated with the
input intensity vector.

7 IMPLEMENTATION
7.1 Equipment
We use IDS Vision’s UI-3480LE-M-GL monochrome camera, the
One Plus 6 smartphone, and the Motorola G5 Plus smartphone.
The One Plus 6 and Motorola G5 Plus were specifically selected
for our experiments because the cameras in these phones support
manual mode which is necessary for our frequency, phase, and
voltage measurement techniques. Manual mode also allows us to
keep the camera parameters consistent for all the experiments.
The 16MP One Plus 6 camera is equipped with a F/1.7 physical
aperture and CMOS Sony IMX519 sensor [6]. The 12MP Moto G5
Plus camera is equipped with a F/1.7 aperture and Sony IMX260
sensor [17, 22]. The IDS Vision camera possesses a 4.92MP CMOS
sensor(MT9P031STM) and provides image resolution of 2560 x
1920 pixels. It can be controlled using IDS Vision’s freely available
software suite. In addition to the imaging equipment, we used a
B+W 62mm cross screen 4-point star filter for phase detection
in outdoor scenes. Additionally, Powerstat’s 10A, 1.4kVA variable
transformerwas used to step voltage values up and down for voltage
monitoring experiments.

7.2 Image Data Acquisition
For all the experiments, the phone cameras were operated at F2.0,
ISO 800-1600, shutter speed 1/1000 − 1/800 (rolling image) and
1/60 (DC image). The vision camera was operated at F/1.4, Gain 9x,
shutter speed 1/800 (rolling image) and 1/60 (DC image). We have
developed an Android application and a script for the vision camera
that automates the process of capturing rolling and DC images and
it also stores camera’s GPS coordinates.

We captured images of a wall using cell phone cameras, extracted
a column of pixels from each image, and applied a discrete Fourier
transform to the extracted signal [25]. The frequency value corre-
sponding tomaximum signal energy was then selected as the spatial
frequency of the image and was used to calculate the inter-row
delay D as discussed in Section4.

7.3 Lighting Database
Sheinin et al. [24, 25] developed a database of BRFs of around 30
bulbs for 230V/50Hz grids. To study and better understand the
behavior of different light sources, we developed our own light-
ing database for 120V/60Hz grid systems. Our lighting database

contains BRFs of 81 different light bulbs from 10 different com-
panies, and other information like actual power consumption, la-
beled wattage, illuminance (lux), manufacturer, price, and company
name∗. Table 1 summarizes the spread of our lighting database.
BRFs were sensed using SparkFun’s TEMT6000 light sensor and
MSOX2024A oscilloscope. Every bulb was connected to the same
power outlet in the lab and the distance between a bulb and the
sensor was maintained constant at 40cm. BRF recording for every
bulb was triggered on the rising edge at the zero-crossing of power
supply voltage for maintaining consistency in database readings.
BRFs of a few bulbs and the AC input waveform are shown in
Figure 1. The recorded BRF data are used for a phase detection
technique discussed in Section 5. The BRF data can also be used for
on-the-fly bulb type detection and bulb identification in the future.

8 RESULTS AND EVALUATION
Here, we explore the capabilities and limits of imaging devices to
measure grid parameters as discussed in Sections 4, 5, and 6.

8.1 Frequency Monitoring
We conducted frequency monitoring experiments in two countries
- USA and India. The electric grid in the US operates at 120V/60Hz
while in India it operates at 230V/50Hz. A set of 10 different bulbs
per country was selected such that each set contained 3 CFL, 3
incandescent, 1 halogen, and 3 LED type bulbs. The criteria for
selecting a specific bulb was: it has to be popular among and afford-
able by middle-income people in each respective country. Bulbs
were then selected based on online reviews and inputs from local
vendors in the US and India.

One bulb at a time was connected to the supply, and rolling
and DC images of a wall illuminated by the bulb were captured
using the imaging equipment. The vision camera was placed at a
distance of 5ft from the wall and smartphone cameras were placed
at 3ft from the wall. Every time a new bulb was brought in for the
experiment, the supply frequency at the outlet was recorded using
a multi-meter to be used as ground-truth data. We applied all the
three frequency monitoring techniques discussed in Section 4 on
the captured images. Calculated frequency was then compared with
ground data to calculate mean absolute percentage errors (MAPE)
associated with every method as shown in Table 2. All methods
performed well but power spectral density (PSD) gave the most
accurate results. Using the PSD technique we quantified the error
in frequency measurement with varying distance between camera
and the wall. We observed that beyond 5ft for Motorola and 6ft for
OnePlus, the power of other frequency components was higher than
the power of the nominal frequency component and so the detected
frequency measurements were highly erroneous. Therefore, for all
frequency and indoor phase detection experiments, smartphones
were placed at a maximum distance of 5ft from the wall.

8.2 Phase Detection
8.2.1 Phase Detection Indoors.
First, the phase connections of power outlets in our labweremapped
using an oscilloscope. Two outlets 240◦ apart in phase were then
selected for the experiments. One outlet was assumed to be a refer-
ence outlet for all experiments.
∗Databasewill be publicly available at http://traces.cs.umass.edu/index.php/Smart/Smart
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Table 2: Errors in Frequency Detection

Peak Finding PSD Sine Fitting

Motorola G5 Plus 2.76% 1.98% 4.22%
One Plus 6 2.34% 1.75% 3.83%

IDS Vision Camera 1.55% 1.21% 2.60%

Table 3: Errors in Phase Detection (Indoors)

Signal-Sine Signal-BRF Signal-Signal

Motorola G5 Plus 9.4% 5.0% 11.2%
One Plus 6 7.6% 4.1% 10.3%

IDS Vision Camera 6.5% 2.0% 7.8%

For a single experiment, we used two bulbs and connected them
to the two power outlets. A rolling image and a DC image were
then captured using the imaging equipment. We followed the same
process of image normalization and flicker pattern extraction as
discussed in Section 5. The wave patterns were then passed through
two phase detection techniques, sine fitting and Signal-BRF fitting,
to obtain the phase difference value. 10 experiments were conducted
and each experiment involved a different pair of bulbs from our
database. Table 3 displays a MAPE value for every technique. The
Signal-BRF method performed significantly better than sine-fitting
for images captured using smartphones and a vision camera. One
major benefit of the sine-fitting technique is that it does not depend
on the bulb type or its BRF, unlike the Signal-BRF technique.

We conducted one more study in which we ignored the BRFs
and the bulb types. Using the same recorded images, we directly
measured the time shift between the recorded signals and then
calculated the phases. The results are provided in column Signal-
Signal in Table 3. Results show that for cases when BRFs and bulb
types are unknown, measuring phase shift between sine-fitted sig-
nals is better than measuring phase shift between the recorded
signals. Nonetheless, the Signal-Signal method remains useful in
cases when we cannot fit a sine-wave to the flicker signal and the
BRFs are unknown. For example, flickering of some LEDs is not
significant, making it difficult to fit a sine-wave to the signal.

8.2.2 Phase Detection Outdoors.
We selected two different outdoor scenes for phase detection exper-
iments. Rolling and DC images for every scene were captured using
two methods - defocusing the lens and using a 4-point star filter.
Flicker wave patterns for every source were extracted as discussed
in Section 5. We only applied Signal-Sine and Signal-Signal meth-
ods for phase calculations since we did not have BRFs of lamps in
the outdoor scenes. Figure 9 displays the detected phase values for
bulbs in the captured scene. For the outdoor scenes, the recorded
flicker wave signals for distant bulbs were very noisy which ren-
dered inference of any information nearly impossible. This calls
for the use of more powerful lenses. Another observation from our
outdoor experiments was that our two smartphone cameras do not
have enough defocusing capability to be able to produce significant
point spread functions of light sources and so the potential to use
the defocusing technique with smartphones may be in question.
This may be solved by attaching powerful external lenses to the
phone camera.

0°

132°132°

0°
112°

No flicker observed 256°

112°

(a) (b)
Figure 9: Phase detection for outdoor scenes captured using
an IDS vision camera in a (a) street and (b) parking lot.

Table 4: Errors in Phase Detection (Emulated Outdoors) - De-
focusing

Signal-Sine Signal-BRF Signal-Signal

Motorola G5 Plus 100% 99.7% 100%
One Plus 6 100% 98.9% 100%

IDS Vision Camera 7.9% 3.6% 8.1%

Table 5: Errors in Phase Detection (Emulated Outdoors) -
Star Filter

Signal-Sine Signal-BRF Signal-Signal

Motorola G5 Plus 12.7% 10.0% 16.5%
One Plus 6 10.8% 7.5% 11.6%

IDS Vision Camera 7.8% 3.1% 8.6%

90 95 100 105 110 115 120 125 130 135 140
Voltage(V)Voltage(V)

Under-Voltage Normal-Voltage Over-Voltage

90 95 100 105 110 115 120 125 130 135 140
Voltage(V)Voltage(V)

Under-Voltage Normal-Voltage
(a)

(b)

Figure 10: Discrete voltage value classification: (a) without
bias correction and (b) with bias correction

We did not possess ground truth data for the bulbs in outdoor
scenes. In order to assess the effectiveness of phase detection for
outdoor scenes and to verify our observations, we created a sim-
ple setup to emulate an outdoor scene in our lab with 3 lamps
directly visible to the cameras with known types, BRFs, and phase
connections of the bulbs involved. The complete phase detection ex-
periment was repeated for three different positions of light sources
in the room. Table 4 and Table 5 provide the evaluation results of
both the flicker inducing methods in the form of MAPE. The star fil-
ter method demonstrated an overall better performance compared
to camera defocusing.

8.3 Voltage Monitoring
We selected a range of 5 different bulbs for our voltage monitor-
ing experiments - 2 CFL, 2 incandescent, and 1 LED. For the data
collection process, one bulb at a time was connected to an outlet
via a voltage transformer and a camera was used to captured a
wall illuminated by the bulb. The camera was placed at 5 different
distances from the wall - 5ft, 6ft, 7ft, 9ft, and 11ft. At every stop,
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Table 6: Test Case Voltage Prediction Results

Device Bulb MAE RMSE MAPE (%)
One Plus 6 CFL1 13.60 15.76 12.16

CFL2 12.56 15.80 11.20
Incan1 13.54 15.67 12.12
Incan2 13.52 15.98 12.09
LED1 13.68 14.56 12.17

Vision Cam CFL1 9.37 11.68 8.33
CFL2 10.01 12.65 9.18
Incan1 6.42 8.27 5.93
Incan2 9.31 12.28 8.29
LED1 11.46 13.12 10.48

images were captured for 11 different AC voltage settings ranging
from 90V to 140V in steps of 5V. Multiplier arrays corresponding
to every bulb were obtained using the first regression level. K-fold
cross validation was then employed to split data into training and
testing sets for each bulb. Regression level 2 model i.e. the voltage
prediction model was trained using the training data-set. The test
case voltage prediction error results - mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage error
(MAPE) values have been presented in Table 6. As shown in Table 6,
the MAPE range of our models is 6 to 12.5% which is sufficient to
detect a brownout, and it can be seen that the vision camera gives
relatively better prediction results.

It is not feasible to have a model for every bulb, and so we studied
the behavior of trained models when they encounter a bulb with a
similar BRF but not exactly the one for which they were trained.
Corresponding to every trained model, we selected one held out
bulb with a similar BRF. Held out bulbs were supplied with 90-
140V AC supply in steps of 5V, and corresponding images were
recorded from a distance of 9ft. Held out bulb image data was then
passed onto corresponding trained models for prediction. It was
observed that the prediction error for voltage range 105-130V was
much lower compared to that of a wider range of 90-140V. This
indicates that the trained models’ performance deteriorates at the
edges of our voltage range. The model can effectively be used to
detect brownouts or under-voltage events. According to the utility
PG&E’s national steady state voltage regulation standards [20], the
utilization level voltage can vary from -13% to +6% of nominal 120V,
i.e., in the range 104.4V to 127.2V. Let us label voltage predicted
by CFL1 model for the held out case as under-voltage if it is less
than 105V, normal-voltage if it is between 105 and 130V, and over-
voltage beyond 130V. As shown in Figure 10(a), the model was able
to classify brown-outs with some error but not over-voltage events.
If we correct for a bias in predicted voltages, all the events were
perfectly classified, as shown in Figure 10(b).

9 DISCUSSION
9.1 Potential Applications
Smartphones are pervasive and their ability to passively measure
grid parameters could provide us with a low-cost part-time monitor-
ing system at grid-edges, as opposed to smart meters [9]. Attaching
the vision devices to utility vehicles or public transport vehicles
could help monitor streets and houses in the area. Acquired data can
then be used to detect and pin-point regions with poor power qual-
ity. Voltage problems associated with a specific group of houses can

Table 7: Held Out Case Voltage Prediction Results

Device Bulb MAE RMSE MAPE (%) MAPE (%)
(90-140V) (105-130V)

One Plus 6 CFL1 19.61 20.77 16.34 9.02
CFL2 18.63 19.34 14.42 11.78
Incan1 21.59 23.75 19.59 13.66
Incan2 17.4 18.21 15.93 10.74
LED1 19.48 21.93 16.29 11.38

Vision Cam CFL1 12.10 15.07 10.99 8.09
CFL2 14.16 16.66 11.36 9.90
Incan1 37.20 38.54 32.17 15.39
Incan2 15.63 17.45 14.21 9.31
LED1 19.15 22.35 14.93 9.04

usually be tracked down to the distribution transformer supplying
electricity to their homes, and can help utility personnel conduct
predictive maintenance of their system for ensuring reliability.

As an example application, unreliable electricity supply in sub-
Saharan Africa causes many customers to purchase backup diesel
generators. Farquharson et al. [7] show that backup diesel power is
very expensive compared to grid electricity and is also a significant
source of pollution. Frequency and phase detection techniques
proposed in this paper can be used to detect and count backup
generators in a regionwhich can help inform better decisionmaking
in the systems planning process.

A balanced three-phase power system can become unstable if
there is a significant difference in the energy consumption on dif-
ferent phases. Imbalance can increase stress on various distribution
grid components and cause faulty operation of protection equip-
ment [16]. To keep a system balanced and stable, it is crucial to
maintain data on phase connections of customers, which our system
can do. Customer phase information can also be of great value for
balancing the systems with increasing renewable integration and
for successful incorporation of demand response programs [16].
Buevich et al. [5] demonstrated that upstream supply data and
downstream consumption data cannot only be used to calculate
microgrid losses but also to estimate non-technical losses. Incor-
porating data acquired using our phase detection technique could
provide more granular phase-level insights into grid loss measure-
ments which could potentially be used to detect electricity theft.

9.2 Limitations and Deployment Challenges
Since the photos taken at night contain noise, it becomes difficult to
record the useful flicker information beyond a certain distance from
the scene. Using our current techniques, this limits reach to 3-5ft
from the scene if using smartphone cameras. Better cameras might
help in improving the distance range for capturing reliable readings
but it is yet to be explored. Post-processing software of different
phone cameras play a major role in rendering an image and can
possibly affect our measurements but we have not yet studied its
effect in detail. Since sensors in cameras differ, changing a vision
device can affect voltage prediction results. In such a case, one will
have to develop completely new models by acquiring data using the
new device. Also, not all LEDs flicker or have a sinusoidal waveform,
so we will not be able to estimate source frequency from the flicker
frequency. Our phase and frequency detection techniques will fail if
an LED behaves as if operating on a DC supply. Additionally, in all
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the experiments, we have not taken into consideration the aspect
that some bulbs glow dimmer with age, which can incorrectly be
interpreted as a brown-out condition. Another major deployment
challenge is capturing stable images on-the-fly. Ambient conditions
affect the quality of recorded information and requires automatic
adjustment of ISO, shutter speed, and aperture within acceptable
limits. Different scenes may demand a different set of lenses for the
vision devices.
9.3 Future Work
We plan on conducting more in situ experiments to better under-
stand the involved scene complexities and to refine our sensing
methods. Imaging devices run on batteries and so it is necessary to
understand the maximum time for which a fully charged vision de-
vice can capture images. Another way forward will be to study the
improvement/deterioration of measurements taken using phone
cameras with clip-on external lenses. Instead of having one voltage
prediction model per bulb, we plan to reduce redundancy by devel-
oping a universal model that can be used to predict voltage across
any AC powered source. One possible method of building a model
can be through convolutional neural networks. A bulb identifica-
tion algorithm, similar to the one developed by Yin et al. [27], will
be developed to facilitate phase detection techniques that require
knowledge of bulb type and BRF. One major ongoing aspect of
this project is grid mapping. For grid mapping, we estimate GPS
coordinates of a light source using GPS coordinates of our phone
and features from images; then, we can localize the detected light
sources for mapping. We are using tools like Simultaneous Local-
ization and Mapping (SLAM) to achieve accurate localization. None
of the techniques discussed in this paper can be applied towards
wide-area scene monitoring. Our new direction will be to devise
and demonstrate a technique using principles provided in [25] and
[3] to detect frequency and phases in wide-area scenes using burst
image capture. Additionally, burst capture of a scene at a high frame
rate could possibly allow us to conduct more nuanced analysis of
local power consumption.
10 CONCLUSION
We have demonstrated GridInSight, a set of techniques for measur-
ing electricity grid parameters – frequency, phase, and voltage –
using only images gathered with commodity cameras. Our results
show errors of 1-2%, 2-5%, and 3-10% for measuring frequency,
phase indoors, and phase outdoors, respectively, using a mix of
smartphone and a machine vision camera. Further, we develop an
entirely novel technique and show an error of 8-15% for measuring
voltage on a lightbulb that our system had not seen previously. We
believe these results herald a new capability to visually measure
electricity grids, enabling new applications as diverse as backup
generator mapping, phase map correction, and roaming power qual-
ity monitoring. We believe that GridInSight can contribute to better
and more diverse measurement of electricity grids that will lead to
more reliable and plentiful electricity everywhere.
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